Hamilton circuits (Section 2.2)

Under what circumstances can we be sure a graph has a Hamilton circut?
Theorem 1. K, has a Hamilton circuit for n > 3.

Proof. Let vy, ...,v, be any way of listing the vertices in order. Then v; — vy —
-+« — v, — v is a Hamilton circuit since all edges are present. O

In general, having lots of edges makes it easier to have a Hamilton circuit.

Theorem 2. If G = (V,E) has n > 3 vertices and every vertex has degree
> n/2 then G has a Hamilton circuit.

Proof. First, we show that the graph is connected. Suppose G is not connected,
so that G has at least two components. Then we could partition V = Vp U V3
into two non-empty pieces so there are no edges between Vy and V;. (Vp and
V1 might not be components themselves, because there might be more than two
components; instead Vo and V; are unions of components.) Since n = |V| =
[Vo| +| V1|, we must have either |Vp| < n/2 or |V1| < n/2. Say Vj has size < n/2
and pick any v € V5. Then deg(v) > n/2, but every neighbor of v is contained
in V; and is not v, so deg(v) < n/2; this is a contradiction. So G is connected.

We prove there is a Hamilton circuit by induction. Let p,, be the statement
“As long as m + 1 < n, there is a path visiting m + 1 distinct vertices with no
repetitions”. pg is trivial—just take a single vertex.

Suppose p,, is true, so we have a path

Vg — V1 — " — Um-

We want to show that we can extend this to a circuit with one more element. If
vg is adjacent to any vertex not already in the path, we could just add it before
vg and be done. Similarly, if v, were adjacent to any vertex not already in the
path, we could add it after v, and be done.

So we have to consider the hard case. In this case, we have an important
additional fact: all neighbors of vy and all neighbors of v, are somewhere in
the path.

We want to turn our path into a cycle. If vy is adjacent to v, then we already
have a circuit. Suppose not. We want to find the following arrangement:

Vg — V1 Ut—1 — V¢ Um

|

because then we could break the link between v;_; and v; and have the
circuit
Vg = = Upy = Vg — = U1 — Vg — Ut
We know that vy has n/2 neighbors, all of them are in this path, and none
are v,,. Let A be the vertices adjacent to vy, so |A| > n/2. Let B be all the



vertices which are adjacent to v,,, so |B| > n/2. Every vertex in B belongs on
the path, so we can ask about the vertex immediately after it on the path. Let
C be the set of vertices which are immediately after some vertex in B in the
path. Then |C| = |B| > n/2. If ANC = 0—if A and C are disjoint—then
[AUC| > n/2+n/2 > n, so AU C would have to include all the vertices. But
vg is in neither A nor C, so AU C' isn’t all the vertices, so there is some vertex
v € ANC, and so vy € A while v;_1 € B.

Therefore (remember, we're still in the case where we can’t just tack an
element on at the beginning or end) we have turned our path into the circuit

Vg — = Uy = Vg1 — = U1 — Vg — U

If m + 1 = n, we have included all the vertices, so we have a Hamilton circuit
and we’re done. If m + 1 < n, there must be some vertex not included in our
circuit, and since G is connected, there must be some vertex w which isn’t in
our circuit but is adjacent to something in our circuit, say v,. So we can rotate
our circuit so v, is the first vertex and then tack on w before it, say

W=y = Uyl — " = Upp = Vgl — =V — Vg — V¢ — = — Uy1.

This is a path with m + 2 elements, so we have shown p,41.

By induction, we know that for every m, p,,+1 is true, so in particular, there
is a path of length m 4+ 1. In particular, we have a path of length n, and, by the
argument just given, we can turn this path into a circuit. O

We have given some examples of necessary conditions for Hamilton circuits—
things that must be true if a graph has a Hamilton circuit—and sufficient
conditions—things which, if true, guarantee that a graph has a Hamilton circuit.
In the Euler case, we found conditions which were simultaneously necessary and
sufficient; in the Hamilton circuit case, we don’t know of any such conditions.

The conditions we've seen aren’t the only possible ones. Here’s another
sufficient condition:

Theorem 3. Suppose G is a planar graph and has a Hamilton circuit. Take
any drawing of G on the plane. Then the Hamilton circuit creates an inside
and an outside. For each 1, let r; be the regions inside the circuit with i edges
on the boundary, and let r; be the regions outside the circuit with i edges on the
boundary. Then

> (i =2)(ri—r}) =0.

K2

(Here I draw a small graph with a Hamilton circuit and did the calculation.
This is easy to do: draw between 5 and 7 vertices in a circle with the edges
between them and let that be the Hamilton circuit. Then draw some extra
edges both inside and outside, without crossing. This always gives you a planar
graph with a Hamilton circuit. Check that the equation holds. Don’t forget the
“outside” region—the region whose edges are the outside of the graph.)



This theorem gives a more complicated way of seeing that some graphs can’t
have a Hamilton circuit. Here’s an example:
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What are the regions in this drawing? There are nine regions, all of which
have four edges forming their boundary. A Hamilton circuit would have to
divide these nine regions so half were inside and half were outside, which is
obviously impossible.
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Graph Coloring (Section 2.3)

One example of a planar graph is a map, the sort we’d find in geography: imagine
placing a vertex inside each country (or state, or provinice, or whatever) and
drawing an edge between vertices which share a border. If we arrange so each
edge crosses the border between those two countries, we can easily make sure
the edges never cross, so the resulting graph is planar.

Most maps want to color all the countries in such a way that adjacent coun-
tries always get different colors. This corresponds to coloring the vertices of the
graph.

Definition 4. A coloring of a graph is an assignment of a color to each vertex
of a graph so that adjacent vertices have different colors.

The chromatic number of a graph is the smallest number of colors which
must be used to color that graph.

The chromatic number of G is sometimes written x(G) (this is the Greek
letter “chi”).
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For instance, in the graph 4 we could color a Red, b and ¢ Blue, and
d Green, showing that the chromatic number of this graph is at most 3.

In this case, it’s easy to see that the chromatic number is exactly 3: we
couldn’t use two colors because a,b,d are a triangle, so all three need to get
different colors.

It’s easy to show that the chromatic number is small—if I show you how
to color a graph using, say, three colors, you know the chromatic number is at
most three. Showing that the chromatic number is large—that there’s no way
to color a graph more efficiently—can be hard.

Theorem 5. G has chromatic number 1 if and only if G has no edges.



Proof. Easy. If G has chromatic number 1, any edge would be between two
vertices with the same color, so there can’t be any edges. If G has no edges, we
can just make all vertices red trivially. O

Theorem 6. G has chromatic number 2 if any only if G is bipartite and has
at least one edge.

Proof. Suppose G has chromatic number 2. Then there is some way of coloring
G using only two colors, say red and blue. Let R be the red vertices and B the
blue vertices. Then R U B is all the vertices, RN B = (), and all edges must
have one end in R and one in B. So R and B are exactly the division into two
halves.

Conversely, if G is bipartite, we can partition the vertices into V; and V; so
that all edges have one end in Vy and one in V;. So we color Vy red and V;
blue. O

What is a graph which cannot be 2-colored? An example is thre triangle.

Is this the only example? No. Consider any odd cycle—an odd number of
vertices arranged in a loop. Then there’s no way to use only two colors. (It’s
easy to use three—mnumber the vertices around the loop, color the evens red,
the odds blue, and the last vertex, where you run into a conflict, can be colored
green.)

A typical application of coloring is in scheduling problems. For instance,
suppose we schedule delivery vans, and have to make deliveries to different
places in specified time intervals. We could make our vertices be the deliveries
that have to be made, and place an edge between two vertices when the times
are close enough to create a conflict. Then the delivery vans we have are the
colors: we assign a van to each delivery so that we don’t assign the same van to
do same things at the same time.



